

NYLON

Copyright © 2018 Hobson Engineering Company Pty. Ltd. All rights reserved.

NYLON

Natural Nylon Flat Round + Taper	Natural Nylon HEC	Natural Nylon Locking + Sealing	Natural Nylon HEC	Natural Nylon HEC	Nylon Black UV Stable HEC	Natural Nylon HEC
O		0	0	0		Ø
METRIC ANTI-LOSS	METRIC CUP WASHER	METRIC HUBO™	METRIC FLAT ROUND	IMPERIAL FLAT ROUND	METRIC WASHER	METRIC HOLDING
WASHER		WASHER	WASHER	WASHER		WASHER
WR66PAM	WR66PCM	WR66PHM	WR66PM	WR66P	WR66UM	WR66POM
Natural Nylon HEC	Natural Nylon HEC Electrical Properties					

		PA	PA	PP	POM	PE	PVDF
	Transversal resistance ohm.cm	10 ¹²	10 ¹⁵	10 ¹⁷	10 ¹⁵	10 ¹⁷	10 ¹⁴
4	Dielectric strength Kv/mm	30	60	50	20	50	20

Resistance Chart

		- i							
BUSHING WASHER						Goo	d Resistance		
						Limited Resistance			
				Na			Boolotont		
V	VB66PSM		WB66PS					NOU	ive sistant
L.		/ 6.6		_	e	£	Material		
PVC	PC	PA6 / 66	£	PON	Ë	ЪЕ	Substances		
							Cold Water		
							Hot Water		
							Diluted acid		
							Concentrated acid		
							Oxidized acid		
							Hydrofluoric acids		
							Diluted potassium		
							Concentrated potassium		
							Inorganic bases		
							Dry halogen		
							Hydrocarbons		
							Hydrocarbons (chlorinated)		
							Alcohols		
							Ester		
							Ketone		
							Ether		
							Aldehyde		
							Amino acids		
							Organic acids		
							Aromatic hydrocarbons		
							Petrol		
							Mineral oils		
							Greases and oils		
							Hydrocarbons (non-saturated chlorinates)		
							Oil of turpentine		
0.03	0.1 -	1.3 -	0.01 -	0.22 -	<0.01	<0.01	Humidity absorption % to		

Types of Polymer

Glass Fibre Reinforced Nylon (GFR PA6.6):

Same properties as PA6.6 with enhanced mechanical properties of tensile strength, fatigue strength, impact strength, friction and abrasion resistance.

Polypropylene (PP)

Polypropylene is very resistant to fatigue and complies with food standards. A major use is in piping systems where rigidity and resistance to corrosion and chemical leaching are required.

Polyethylene (PE)

Is the most widely used plastic in the world with annual production of approximately 80 million tonnes and is used extensively in packaging applications such as foam, shrink wrapping and plastic bags.

Polycarbonate (PC)

It is a very durable transparent material with high impact resistance but low scratch resistance.

Polyvinylidene Fluoride (PVDF)

Is a highly non-reactive thermoplastic fluoropolymer. It has excellent resistance to solvents and acids.

Acetal (POM)

Acetal resins are odourless, tasteless and non-toxic. Acetal is widely used in the automotive, electrical, machinery, equipment and watch making industries.

Polyamide Nylon (PA, PA6.6, 66)

Is the standard polymer used in the Hobson range of fasteners and is recognised worldwide for being the most suitable material for fasteners. It offers excellent filling qualities and hence is easily moulded even into very difficult long shapes such as threaded rod.

It provides good toughness, tensile strength and resistance to creep, particularly in the high temperature range. Nylon has excellent wear properties, low coefficient of friction and exceptional chemical resistance to aromatic hydrocarbons, greases and oils.

Nylon is a hygroscopic material which has a tendency to absorb water or moisture from the surrounding environment. The amount of absorption will depend on the environmental conditions. When water or moisture is absorbed by Nylon, it behaves like a plasticizer in plastics reducing the tensile strength, stiffness; and increasing elongation, impact strength and energy absorbing characteristics.

Outdoor weathering can be improved by the addition of carbon black. Nylon will perform well in long range service in most applications. Nylon is a translucent to off white in colour. Depending on the raw material used, there will always be slight colour differences from bright white to a very dull off white to light grey.