

"Why compete against your supplier when you can be our partner"

COUPLINGS

Element Identification
Chain Coupling 204
Cone Ring Coupling 205
Curved Jaw (Rotex) Coupling 207
Curved Tooth Gear Coupling 210
Flexible Tyre Coupling 211
HRC Coupling
Jaw Coupling
MAX DYNAMIC [®] Omega [®] Equivalent
MAX DYNAMIC [®] Standard
MAX DYNAMIC $^{ extsf{R}}$ Standard with Compression Bushed Hubs 218
MAX DYNAMIC [®] Spacer
Rigid Coupling 222
Spacer Coupling 223
KCP Couplings 224
Gear Coupling 224
Characteristics, Applications, Installation
Range and Dimensions
Taper Grid Coupling 233
Characteristics, Applications, Installation
Range and Dimensions
Coupling Comparison Chart 244

KCP (Korea) – Korea Coupling Co., Ltd.

Korea Coupling Co., Ltd., is a specialist manufacturer of power transmission equipment including high quality shaft couplings for various industries such as steel mills, paper mining, chemical and cement, etc.

www.koreacoupling.co.kr

Couplings Element Identification

Cone Ring Rubber

Synthetic Rubber - See Cone Ring Couplings

Curved Jaw (Rotex) Element

Polyurethane Red 98/Yellow 92 Shore Hardness Small - to suit size 19 - See Curved Jaw Couplings

Curved Jaw (Rotex) Element

Polyurethane Red 98/Yellow 92 Shore Hardness Med - to suit size 24-64 - See Curved Jaw Couplings

Curved Jaw (Rotex) Element

Polyurethane Red 98/Yellow 92 Shore Hardness Large-to suit size 75-95 - See Curved Jaw Couplings

Curved Tooth Gear Sleeve

"Australia's Only Genuine Wholesaler"

Nylon Sleeve - See Curved Tooth Gear Couplings

Tyre Element

Synthetic Rubber - See Tyre Couplings

Tyre Element (FRAS Rated)

Fire Resistant Anti Static Synthetic Rubber See Tyre Couplings

Taper Grid

Steel Taper Grid - See KCP Grid Couplings

"Why compete against your supplier when you can be our partner"

Finer Power T

HRC Element

ansmissions

Nitrile Rubber - See HRC Couplings

HRC Element (PUE)

Polyurethane - See HRC Couplings

Jaw Element (Spider)

Nitrile Rubber - Small to suit size 050-070 Large to suit size 075-225 - See Jaw Couplings

Jaw Element (Poly-Spider)

Polyurethane - Small to suit size 050-070 Large to to suit size 075-225- See Jaw Couplings

Jaw Element (Snap Wrap)

Nitrile Rubber - See Jaw Couplings

Jaw Elements (Snap Wrap Kit)

Nitrile Rubber & Retaining Ring- See Jaw Couplings

Max Dynamic[®] Element

Omega® Equivalent Polyurethane Element See Max Dynamic® Couplings

Max Dynamic[®] Spacer Element

Omega® Equivalent Polyurethane Spacer Element See Max Dynamic® Couplings

Finer Power Transmissions

The Finer Chain Coupling consists of two sprockets joined together by standard duplex roller chain. This highly compact structure provides high flexibility between shafts, power transmission capabilities and is durable and robust.

Chain Couplings allow for easy maintenance, it is a simple easy on/easy off process.

Finer Power Transmissions Chain Couplings are supplied with casings standard.

Chain Coupling Ratings

	N/1:	Max	Max.	RPM	Moight	
Coupling	Bore	Bore	Without Cover	With Cover	Kg	
C4012	14	22	875	5000	0.73	
C4016	16	32	875	5000	1.5	
C5016	18	40	800	4000	2.75	
C5018	18	45	800	4000	3.6	
C6018	22	56	675	3000	6.55	
C6022	28	71	675	3000	10.4	
C8018	32	80	500	2000	13.2	
C8022	40	100	500	2000	21.8	
C10020	45	110	450	1800	32.4	

Coupling	А	В	С	D	E	K(2)
C4012	62	79.4	36	36	7.4	-
C4016	77	87.4	51.5	40	7.4	0.75
C5016	96	99.7	64	45	9.7	-
C5018	106	99.7	73.5	45	9.7	1.06
C6018	127	123.5	89.5	56	11.5	-
C6022	151	123.5	116	56	11.5	1.38
C8018	169	141.2	115	63	15.2	-
C8022	202	157.2	142	71	15.2	2.06
C10020	233	178.8	162	80	18.8	2.34

Straight Bore Chain Coupling

For increased safety Chain Coupling covers should be used. The cover not only improves the safety of the work place but also increases the Chain Couplings overall durability.

Coupling Covers	Cover Required when RPM Exceeds	А	В	Weight
C4012	075	77	72	0.3
C4016	C/0	92	72	0.35
C5016	200	110	87	0.5
C5018	000	122	85	0.6
C6018	CDE	147	105	1.2
C6022	2/0	168	117	1.2
C8018	500	190	129	1.9
C8022	000	226	137	2.7
C10020	450	281	153	4.1

(2) Space required to loosen bushing with shortened hex key

Cone Ring Coupling

"Why compete against your supplier when you can be our partner"

Finer Power Transmissions"

Finer Cone Ring Couplings are based on a time proven design. The coupling consists of two flanges interlocked with a number of elements, depending on the coupling size.

The Cone Rings Couplings unique flexible element comprises tapered rubber rings mounted on steel pins. The rubber rings absorb commonly encountered misalignment, shock and vibration.

The Cone Ring Coupling is as popular as ever for its ease of maintenance. No Lubrication is required. The Pin and Rubber design ensures trouble free maintenance, as they can be removed and changed without the need to take the coupling off the shafts.

The flanges are high-grade cast iron; the pins are hexagonal steel bar; and the rings are synthetic rubber.

TYPICAL TAPERLOCK KXT ASSEMBLY

TAPERLOCK KXT BUSH HALF KXT PIN HALF

PILOT BORE KX BUSH HALF KX PIN HALF

No. of F Size Pins Rubb (Rubbers) (D.B		Pin/ Rubber Size	Max. PB/ Si	Bore Bush ze D		н		L	М	R		т		Kg	
	(Rubbers)	(D.Brown)	Pin Half	Bush Half		Pin Half	Bush Half			Pin Half	Bush Half	Pin Half	Bush Half	Pin Half	Bush Half
КХ020	6 (18)	1 ((GC3/4"-3)	28	20	88	35	44		6	12	23	53	33	OA	OA
КХОЗО	4 (12)	2 (GC 1"-3)	38	32	127	64	58	85	3	12	26	4	1	1.8	2.5
KX038	6 (18)	2 (GC 1"-3)	42	38	132	72	64	99	3	12	26	4	8	2.1	2.3
KX042 KXT042	8 (24)	2 (GC 1"-3)	48 1610	42 1215	146	83	78	115 69.5	3	12	26	5 28.4	6 38.1	3.0 1.8	3.2 2.3
KX048 KXT048	6 (18)	3 (GC 1 3/4"-3)	55 2012	48 1615	171	90	82	90 82	3	17	33	6 35	1 38.1	4.9 3.6	5.0 4.6
KX058 KXT058	8 (24)	3 (GC 1 3/4"-3)	65 2517	58 2012	193	106	98	139 82.3	3	17	33	6 47.5	8 31.8	5.1 3.8	5.9 5.6
KX070 KXT070	10 (30)	3 (GC 1 3/4"-3)	75 3020	70 2525	216	128	117	155 121.5	3	17	33	7 55	6 63.5	9.2 6.1	9.0 7.6
KX075	8 (32)	4 (GC 2 3/4"-3)	80	75	254	127	127	179	3	30	56	8	8	16.5	16.9
KX085 KXT085	10 (40)	4 (GC 2 3/4"-3)	105 3535	85 3030	279	166	148	203 172.2	3	30	56	1(93)0 76.2	22.4 17.1	21.5 19.6
KX105 KXT105	12 (48)	4 (GC 2 3/4"-3)	120 4040	85 3535	330	202	180	237 197.5	3	30	56	1 ⁷ 105.6	17 88.9	36.3 24.5	35.0 27.5
KX120 KXT120	10 (40)	5 (GC 4 1/4"-3)	130 4040	120 4040	370	232	206	270 217.2	6	46	76	13 105.6	32 105.6	56.1 39.5	51.0 40.5
KX135 KXT135	12 (48)	5 (GC 4 1/4"-3)	135 4545	135 4545	419	240	230	300 239.6	6	46	76	1/ 119.3	47 114.3	70.0 52.8	71.0 56.8
KX150 KXT150	14 (56)	5 (GC 4 1/4"-3)	150 5050	150 5050	457	160	256	336 265	6	46	76	16 132	55 127	88.6 66.8	93.0 72.8
KX170	10 (40)	6 (GC 6-1/4"-3)	190	170	533	320	292		6	63	92	18	38	305	

Finer Power Transmissions "Australia's Only Genuine Wholesaler"

			Ροι	wer Ratings (Kw @)		
Size	100 rpm	720 rpm	960 rpm	1440 rpm	2880 rpm	Max .rpm	Nominal Torque (Nm)
020	0.55	3.96	5.28	7.92	15.84	6500	53
030	1.16	8.4	11.1	16.7	33.4	4600	110
038	1.87	13.5	18.0	26.9	53.9	4400	175
042	2.84	20.4	27.3	40.9	81.8	4000	265
048	4.93	35.5	47.3	71.0	142.0	3400	465
058	7.54	54.3	72.4	108.6	217.2	3020	720
070	10.70	77.0	102.7	154.1	-	2700	1020
075	25.7	185.0	246.7	370.1	-	2300	2450
085	35.5	255.6	340.8	511.2	-	2090	3390
105	53	382	509	763	-	1760	5080
120	90	648	864	1296	-	1570	8474
135	122	878	1171	-	-	1390	11520
150	159	1145	1526	-	-	1280	15140
170	246	1771	2362			1090	23500

Selection Procedure

- 1. From the service factors table (below) determine the service factor
- 2. Calculate the Design Power by multiplying the Absorbed Power of the driven machine by the Service Factor.
- 3. Determine the size of coupling required by matching the design power to a power rating that matches or exceeds the Design Power.

The Pin Half is normally mounted on the drive shaft.

Duty	Electric Motors
Uniform	1.0
Light	1.5
Moderate	2.0
Heavy	2.5
Severe	3.0

Curve Jaw (Rotex) Couplings

"Why compete against your supplier when you can be our partner"

Finer Power Transmissions*

		D.d.=	Rated ⁻	Torque									
Туре	Hub Type	Speed RPM	92 Sh A Yellow	98 Sh A RED	D	D1	d-min	d-max	S	L1	L2	L	Kg
GE19	1	19000	10	17	40	37	6	19	1	29	25	65	0.19
	1a	15000		17	40		19	24	1				0.15
GE24	1	14000	35	60	56	40	9	24	1	46	30	77	0.38
	1a	1 1000					22	28					0.50
GE28	1	11800	95	160	65	48	10	28	1.5	52.5	35	89	0.62
	1a	11000					28	38		52.5			0.02
GE38	1	9500	190	325	80	66	12	38	1	66	45	112	1.36
1a						38	45						
GE42	1	8000	265	450	95	75	14	42	- 1	73	50	174	2.03
	1a		205				42	55		/ 5		12-7	2.05
	1	7100	210	EDE	105	OF	15	48	1 5	90 E	FC	170	
GE40	1a	7100	510	525	105	CO	48	60	1.D	C.UO	00	001	2.00
CEEE	1	C200	(10	COL	120	00	20	55	-	01	CE	150	(
GESS	1a	6300	410	680	120	98	55	70		91	20	158	4.32
CEGE	1	5600	675	0/-0	125	115	22	65	15	105 5	75	107	6.66
GLOJ	1a	0000	025	940			22	65		105.5	/]	102	0.00
CE75	1	/.750	1700	1020	160	125	30	75	1	120	05	206	10 /.0
GE75 –	1a	4750	1280	1920	160	135	30	75	1 1	120	20	200	10.48
GE90 -	1	2750	24.00	3600) 200	200 180	40	90	1 5	120 F	100	77.1	17.89
	1a	3750	2400				40	90	1.5 139	139.5	100	241	

Curve Jaw (Rotex) Couplings

		Max	Max Rated																	
Туре	Hub Type	Speed RPM	92 Sh A Yellow	98 Sh A RED	Bush Size	Max Bore	D	D1	S	L1	L2	L	Kg							
GE28	F	11800	95	160	1108	28	65		15	40 5	23	65	0.46							
GL20	Н	11000	55	100	1108	28	00		1.5	40.5	20	00	0.40							
CEOO	F 9500	9500	100	275	1108	28	00	70	1	1.1.	77	60	0.70							
GESO	Н	9500	190	525	1108	28	00	/0		44	25	00	0.79							
GE42	F	8000	265	450	1610	42	05	0/	1	/.0	76	76	1 1							
	Н	8000	205	450	1610	42	30	94		49	20	70	1.1							
	F	7100 310	210	575	1615	42	105	10/.	1 5	62 5	20	10/	2 0 7							
GE40	Н	7100	510	525	1615	42	201	104	1.5	05.5	29	104	2.07							
CE55	F	6300	410	685	2012	50	120	110	7	50	22	0/	777							
GESS	Н	0300	410	000	2012	50	120	110	Ζ	29	22	94	2.22							
CECE	F	ECOO	C 25	C 25				C 2 5	C 2 5		0/0	2012	50	175	177	1 5	63.5	33	98	3.14
GEOD	Н	000	020	940	2517	65	CCI	CCI	C.1	75.5	45	122	4.03							
CERE	F	(750	1200	1020	2517	65	100	175	1	81	46	128	4.69							
UE/5	Н	4/50	1280	1920 -	3020	75	160	135		87	52	140	4.99							
GE90	F	2750	2400	0 3600	3020	75	200	160	60 1.5	91.5	52	145	7.74							
	Н	3750			3525	100				103.5	64	169	8.74							

Every effort has been taken to ensure that the data listed in this catalogue is correct. Finer Power Transmissions P/L will not accept liability for any damage or loss caused as a result of the data in this catalogue.

"Why compete against your supplier when you can be our partner"

Power Ratings (KW)

	Yellow (92 Shore) Elements												
Speed					Coupli	ng Size							
(RPM)	19	24	28	38	42	48	55	65	75	90			
100	0.1	0.37	1	1.99	2.78	3.25	4.29	6.55	13.4	25.1			
500	0.52	1.83	4.98	9.95	13.9	16.2	21.5	32.7	67	126			
700	0.73	2.56	6.97	13.9	19.4	22.7	30.1	45.8	93.8	176			
720	0.75	2.64	7.16	14.3	20	23.4	30.9	47.1	96.5	181			
800	0.84	2.93	7.96	15.9	22.2	26	34.3	52.4	107	201			
900	0.94	3.29	8.96	17.9	25	29.2	38.6	58.9	121	226			
960	1.01	3.51	9.55	19.1	26.6	31.2	41.2	62.8	129	241			
1000	1.05	3.66	9.95	19.9	27.8	32.5	42.9	65.5	134	251			
1200	1.26	4.39	11.9	23.9	33.3	39	51.5	78.5	161	302			
1400	1.47	5.12	13.9	27.9	38.9	45.4	60.1	91.6	188	352			
1440	1.51	5.27	14.3	28.7	40	46.7	61.8	94.2	193	362			
1500	1.57	5.49	14.9	29.9	41.6	48.7	64.4	98.2	201	377			
1800	1.88	6.59	17.9	35.8	50	58.4	77.3	118	241	452			
2000	2.09	7.32	19.9	39.8	5.55	64.9	85.9	131	268	503			
2880	3.02	10.5	28.7	57.3	79.9	93.5	124	188	386	724			
3000	3.14	11	29.9	59.7	83.3	97.4	129	196	402	754			
4000	4.19	14.6	39.8	79.6	111	130	172	262	536	-			

	Red (98 Shore) Elements												
Speed					Coupl	ing Size							
(RPM)	19	24	28	38	42	48	55	65	75	90			
100	0.018	0.63	1.68	3.4	4.71	5.5	7.17	9.84	20.1	37.7			
500	0.89	3.14	8.38	17	23.6	27.5	35.9	49.2	101	189			
700	1.25	4.4	11.7	23.8	33	38.5	50.2	68.9	141	264			
720	1.28	4.52	12.1	24.5	33.9	39.6	51.6	70.9	145	271			
800	1.42	5.02	13.4	27.2	37.7	44	57.4	78.7	161	302			
900	1.6	5.65	15.1	30.6	42.4	49.5	64.6	88.6	181	339			
960	1.71	6.03	16.1	32.7	45.2	52.8	68.9	94.5	193	362			
1000	1.78	6.28	16.8	34	47.1	55	71.7	98.4	201	377			
1200	2.14	7.54	20.1	40.8	56.5	66	86.1	118	241	452			
1400	2.49	8.79	23.5	47.6	66	77	100	138	281	528			
1440	2.56	9.04	24.1	49	67.9	79.2	103	142	290	543			
2880	5.2	18.1	48.4	97.9	135.7	158.4	206.5	283.4	578.9	1085.8			

Curved Tooth Gear Coupling

Finer Power Transmissions "Australia's Only Genuine Wholesaler"

Finer stock a range of pilot bore Curved Tooth Gear Couplings. The Curved Tooth Gear Coupling consists of 2 geared hubs and a curved tooth nylon sleeve.

Product Characteristics:

- Double-Section tpye curved-tooth gear couping
- Widely applicable in various mechanical & hydraulic fields
- Nylon & steel matched, maintenance free
- Able to offset axial, radial & angular misalignments
- Axial plugging assembly, very convenient

Nylon Toothed Sleeve Characteristics:

- Excellent Mechanical Performance
- High rigidity

www.finerpt.com

- High temperature resistance (+100C)
- Not embrittled at low temperature
- Good slippery & frictional behaviour
- Excellent electrical insulation behaviour
- Chemical corrosion endurable
- HIgh Accuracy of processing

	May Doro			Dim	ensions			Torque	Weight (Kg)		
Size	(mm)	1 2	LO	L	M, N	Е	D1	D	Rating (Nm)	Nylon Sleeve	Hub Half
RGF-19	19	25	54	37	8.5	4	48	30	16	0.03	0.21
RGF-24	24	26	56	41	7.5	4	52	36	20	0.04	0.25
RGF-28	28	40	84	46	19	4	66	28	45	0.07	0.62
RGF-32	32	40	84	48	18	4	76	50	60	0.09	0.83
RGF-38	38	40	84	48	18	4	83	58	80	0.11	1.04
RGF-42	42	42	88	50	19	4	92	65	100	0.14	1.41
RGF-48	48	50	104	50	27	4	95	67	140	0.16	1.43
RGF-55	55	52	108	58	25	4	114	82	240	0.26	2.50
RGF-65	65	55	114	65	23	4	132	95	380	0.39	3.58

Ordering Curved Tooth Gear Couplings:

RGF-XX-1 = Curved tooth gear hub half

RGF-XX-2 = Curved tooth nylon gear sleeve

"Why compete against your supplier when you can be our partner"

Finer Power Transmissions"

Finer stock a range of the highly flexible Tyre Couplings. Consisting of two flanges, the two

halves are joined by a rubber tyre. The tyre itself is torsionally soft and flexible; this allows the Tyre Coupling to compensate for large amounts of shock loading and backlash, as well as both parallel and axial misalignment. Finer also stocks all tyres in the Fire Resistant Anti-Static (FRAS) compund for those certain sensitive environments.

Highly Flexible

Compensates for misalignment, upto; 4° angular, 6mm parallel, 8mm axial. Torsional flexibility of upto 12°, at max. torque.

Size	Power @ 100 rpm in	Nominal	Max.	Bore B B		Bush F	Bush H	M Misaliş	End Float	
	Kw	Torque	Speed rpm	Max.	Min.			Parallel	Angular	
T4	0.26	25	4500	25	10	1008	1008	1.1	4	1.3
T5	0.69	66	4500	32	11	1210	1210	1.3	4	1.7
T6	1.33	127	4000	42	14	1610	1610	1.6	4	2
T7	2.62	250	3600	50	14	2012	1610	1.9	4	2.3
T8	3.93	375	3100	65	14	2517	2012	2.1	4	2.6
Т9	5.24	500	3000	65	16	2517	2517	2.4	4	3
T10	7.07	675	2600	75	16	3020	2517	2.6	4	3.3
T11	9.20	875	2300	75	24	3020	3020	2.9	4	3.7
T12	13.9	1300	2050	100	24	3525	3020	3.2	4	4
T14	24.3	2320	1800	100	35	3525	3525	3.7	4	4.6
T16	39.4	3770	1600	115	40	4030	4030	4.2	4	5.3
T18	65.7	6270	1500	125	55	4535	4535	4.8	4	6

H Flange

F Flange

SIZES F70 - 250

H Flange

Size	Δ	A C		E	E _		_ L				DЛ	К	g
Size	A	L		F	н		F	Н	G	J	IVI	F	Н
T4	104	82	-	22	22	-	33.5	33.5	N/A	29	11	0.8	0.8
T5	133	100	79	25	25	-	38	38	N/A	38	12.5	1.2	1.2
Т6	165	125	103	25	25	-	42	42	N/A	36	16.5	2.0	2.0
T7	187	144	80	32	25	50	44	42	13	36	11.5	3.1	3.0
T8	211	167	98	45	32	54	58	45	16	42	12.5	4.9	4.6
Т9	235	188	108	45	45	60	59	59	16	48	13.5	7.0	7.0
T10	254	216	120	51	45	62	65	59	16	48	13.5	9.9	9.4
T11	279	233	134	51	51	62	63.5	63.5	16	55	12.5	11.7	11.7
T12	314	264	140	65	51	67	78.5	65.5	16	67	14.5	16.5	16.9
T14	359	311	178	65	65	73	81	81	14	67	16	22.3	22.3
T16	402	345	197	77	77	78	92	92	16	80	15	32.5	32.5
T18	470	398	205	90	90	94	112	112	19	89	23	42.2	42.2

sguildho'

Power Ratings (KW)

Speed					Cou	oling Size	е					
rev/ min	Τ4	T5	T6	T7	T8	Т9	T10	T11	T12	T14	T16	T18
100	0.25	0.69	1.33	2.62	3.93	5.24	7.07	9.16	13.9	24.3	39.5	65.7
200	0.5	1.38	2.66	5.24	7.85	10.5	14.1	18.3	27.9	48.7	79	131
300	0.75	2.07	3.99	7.85	11.8	15.7	21.2	27.5	41.8	73	118	197
400	1.01	2.76	5.32	10.5	15.7	20.9	28.3	36.6	55.7	97.4	158	263
500	1.26	3.46	6.65	13.1	19.6	26.2	35.3	45.8	69.6	122	197	328
600	1.51	4.15	7.98	15.7	23.6	31.4	42.4	55	83.6	146	237	394
700	1.76	4.84	9.31	18.3	27.5	36.6	49.5	64.1	97.5	170	276	460
720	1.81	4.98	9.57	18.8	28.3	37.7	50.9	66	100	175	284	473
800	2.01	5.53	10.6	20.9	31.4	41.9	56.5	73.3	111	195	316	525
900	2.26	6.22	12	23.6	35.3	47.1	63.6	82.5	125	219	355	591
960	2.41	6.63	12.8	25.1	37.7	50.3	67.9	88	134	234	379	630
1000	2.51	6.91	13.3	26.2	39.3	52.4	70.7	91.6	139	243	395	657
1200	3.02	8.29	16	31.4	47.1	62.8	84.8	110	167	292	474	788
1400	3.52	9.68	18.6	36.6	55	73.3	99	128	195	341	553	919
1440	3.62	9.95	19.1	37.7	56.5	75.4	102	132	201	351	568	945
1600	4.02	11.101	21.3	41.9	62.8	83.8	113	147	223	390	632	
1800	4.52	12.401	23.9	47.1	70.7	94.2	127	165	251	438		
2000	5.03	13.801	26.6	52.4	78.5	105.5	141	183	279			
2200	5.53	15.201	29.3	57.601	86.4	115	155	202				
2400	6.03	16.601	31.9	62.8	94.2	126	170					
2600	6.53	18.001	34.6	68.1	102	136	184					
2800	7.04	19.401	37.2	73.3	110	147						
2880	7.24	19.901	38.3	75.4	113	151						
3000	7.54	20.701	39.9	78.5	118	157						
3600	9.05	24.901	47.9	94.2								

Physical Characteristics

Characterictics						Coupli	ing Size					
	T4	T5	T6	T7	T8	T9	T10	T11	T12	T14	T16 1 1,600 2 3,770 2 9,339 2 778 2 4.2 2 5.3 2 3.4 2 1,556 2 7 2 0.9 3.4 1,556 2 0.9 0.9	T18
Maximum speed rev/min	4,500	4,500	4,000	3,600	3,100	3,000	2,600	2,300	2,050	1,800	1,600	1500
Nominal Torque Nm TK N	24	66	127	250	375	500	675	875	1,330	2,325	3,770	6270
Maximum Torque Nm TK MAX	64	160	318	487	759	1,096	1,517	2,137	3,547	5,642	9,339	16455
Torsional Stiffness Nm/O	5	13	26	41	63	91	126	178	296	470	778	1371
Max. parallel misalignment mm	1.1	1.3	1.6	1.9	2.1	2.4	2.6	2.9	3.2	3.7	4.2	4.8
Maximum end float mm ±	1.3	1.7	2	2.3	2.6	З	3.3	3.7	4	4.6	5.3	6
Approximate mass. kg	0.1	0.3	0.5	0.7	1	1.1	1.1	1.4	2.3	2.6	3.4	7.7
Alternating Torque ± Nm @ 10Hz TKW	11	26	53	81	127	183	252	356	591	940	1,556	2742
Resonance Factor V R	7	7	7	7	7	7	7	7	7	7	7	7
Damping Coefficient	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9

Couplings

HRC Coupling

Finer Power Transmissions"

The HRC Coupling is a proven performer, consisting of two cast iron flanges and a rubber element, which performs under compression.

The modular design allows for a simple fitting and easy maintenance whilst the rubber element absorbs shock loading and compensates for marginal misalignment.

Finer Power Transmissions carries a full range of HRC Couplings in Pilot Bore and Taper Lock.

Finer also stocks all elements in polyurethane.

Coupling	Assembled Length (L)	Weight	Inertia Mr2 kam	Dynamic Stiffness	Maxi Misalig	mum gnment	Nominal Torque
	FF,FH,HH	мg	WIZ Kgill	Nm/°	Parallel	Axial	Nm
70	65	1	0.00085	-	0.3	0.2	31
90	69.5	1.17	0.00115	-	0.3	0.5	80
110	82	5	0.004	65	0.3	0.6	160
130	89	5.46	0.0078	130	0.4	0.8	315
150	107	7.11	0.0181	175	0.4	0.9	600
180	142	16.6	0.0434	229	0.4	1.1	950
230	164.5	26	0.12068	587	0.5	1.3	2000
280	207.5	55.3	0.44653	1025	0.5	1.7	3150

HRC Coupling

Service Factors

Finer Power Transmissions 🔬 📔 www.finerpt.com

SPECIAL CASES For applications where substantial shock, vibration and torque fluctuation occur, and for	Type of Driv	ving Unit		Type of Driving Unit			
reciprocating machines e.g. internal combustion engines, piston type pumps and compressors, refer to your local Authorised Distributor with full machine details for torsional analysis.	Electric Mot Steam Turb	tors ines		Internal Combustion Engines Steam Engines Water Turbines			
	Hours per d	lay duty		Hours per d	lay duty		
Driven Machine Class	8 and under	Over 8 to 16 inclusive	Over 16	8 and under	Over 8 to 16 inclusive	Over 16	
UNIFORM Agitators, Brewing machinery, Centrifugal blowers, Centrifugal compressors†, Conveyors, Centrifugal fans and pumps, Generators, Sewage disposal equipment.	1	1.12	1.25	1.25	1.4	1.6	
MODERATE SHOCK* Clay working machinery, Crane hoists, Laundry machinery, Wood working machinery, Machine tools, Rotary mills, Paper mill machinery, Textile machinery, Non-unifomly loaded centrifugal pumps.	1.6	1.8	2	2	2.24	2.5	
HEAVY SHOCK* Reciprocating conveyors, Crushers, Shakers, Metal mills, Rubber machinery (Banbury mixers and mills), Reciprocating compressors, Welding sets.	2.5	2.8	3.12	3.12	3.55	4	

Power Ratings (KW)

Speed	Coupling Sizes											
rev/min.	70	90	110	130	150	180	230	280				
100	0.33	0.84	1.68	3.3	6.28	9.95	20.9	33				
200	0.66	1.68	3.35	6.6	12.6	19.9	41.9	65				
400	1.32	3.35	6.7	13.2	25.1	39.8	83.8	132				
600	1.98	5.03	10.1	19.8	37.7	59.7	126	198				
720	2.37	6.03	12.1	23.8	45.2	71.6	151	238				
800	2.64	6.7	13.4	26.4	50.3	79.6	168	264				
960	3.17	8.04	16.1	31.7	60.3	95.5	201	317				
1200	3.96	10.1	20.1	39.6	75.4	119	251	396				
1440	4.75	12.1	24.1	47.5	90.5	143	302	475				
1600	5.28	13.4	26.8	52.8	101	159	335	528				
1800	5.94	15.1	30.2	59.4	113	179	377	594				
2000	6.6	16.8	33.5	66	126	199	419	660				
2200	7.26	18.4	36.9	72.6	138	219	461	726				
2400	7.92	20.1	40.2	79.2	151	239	503					
2600	8.58	21.8	43.6	85.8	163	259	545					
2880	9.5	24.1	48.3	95	181	286						
3000	9.9	25.1	50.3	99	188	298						
3600	11.9	30.1	60.3	118	226							

For speeds below 100 rev/min, and intermediate speeds, use nominal torque ratings.

* Maximum coupling speeds are calculated using an allowable peripheral speed for the hub material. For selection of smaller sizes with speeds in excess of 3600 rev/min – Consult your local Authorised Distributor.

COUPL

"Why compete against your supplier when you can be our partner"

Finer Power Transmissions"

The Finer Jaw Coupling is recognised across a large range of industries. The Jaw Coupling is highly resilient, it does not require any lubrication and can work in environments contaminated with oil, dirt, sand, moisture and grease.

The rubber insert is designed to absorb shock loading and does not allow for any metal on metal contact. Finer Power Transmissions stocks both the Spider Elements (rubber & polyurethane) as well as the Wrap Element Kits.

Finer Power Transmissions stocks a range of jaw couplings in a variety of pre-bored and keyed sizes.

	FW050	FW070	FW075	FSW095	FSW100	FSW110	FSW150	FSW190	FSW225
Element	\checkmark								
Wrap				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Kit				~	√	~	~	~	
Pilot Bore	\checkmark								
	_			Imperia	al (inch)				
3/8	\checkmark	✓							
1/2	\checkmark	\checkmark	\checkmark	\checkmark					
5/8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
3/4		\checkmark	\checkmark	\checkmark	\checkmark				
7/8			\checkmark	\checkmark	\checkmark	\checkmark			
1				\checkmark	\checkmark	\checkmark	\checkmark		
1-1/8				\checkmark	\checkmark	\checkmark	\checkmark		
1-1/4					\checkmark	\checkmark	\checkmark	\checkmark	
1-3/8						\checkmark	\checkmark	\checkmark	
1-1/2						\checkmark	\checkmark	\checkmark	
1-5/8								\checkmark	
2								\checkmark	
				Metri	: (mm)				
9	\checkmark								
10	\checkmark	√							
11	√	~							
12	\checkmark	√	\checkmark						
14	√	~	~	~					
16		√	\checkmark	~					
18		~	\checkmark	~	~				
19		\checkmark	\checkmark	\checkmark	\checkmark				
20			\checkmark	\checkmark	\checkmark	\checkmark			
22			\checkmark	\checkmark	\checkmark	\checkmark			
24				\checkmark	~	~	~		
25				\checkmark	\checkmark	\checkmark	\checkmark		
28				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
30					\checkmark	\checkmark	\checkmark	\checkmark	
32					\checkmark	~	~	~	
35					\checkmark	\checkmark	\checkmark	\checkmark	
38					\checkmark	~	~	~	
40						\checkmark	\checkmark	\checkmark	
42						\checkmark	\checkmark	\checkmark	
45							\checkmark	\checkmark	
48							~	\checkmark	
50								\checkmark	
55								\checkmark	
60								√	

Jaw Coupling

Finer Power Transmissions "Australia's Only Genuine Wholesaler"

ш

					D	Stock	Weigh	nt (Kg)	Max
Coupling	Туре	А	В	С	D	Bore	Min. Bore	Max. Bore	Bore.
FW050PB	1	27.4	43.4	12.2	15.7	6			15
FW070PB	1	35	53	13	19	6	0.26	0.24	19
FW075PB	1	44.5	53	13	21	6	0.45	0.39	22
FSW095PB	1	54	65	13	25	11	0.79	0.69	29
FSW100PB	1	65	86	19	35	11	1.55	1.32	35
FSW110PB	1	84	110	24	43	16	2.93	2.55	42
FSW150PB	1	96	113	25	45	16	4.06	3.51	48
FSW190PB	1	115	133	25	50	18			55
FSW225PB	1	127	155	25	55	18			65

Power Ratings (KW)

Coupling	Max.	Torque	Speed RPM									
Couping	RPM	(Nm).	100	720	960	1440	2880	3600				
FW050PB	18000	3.51	0.037	0.26	0.35	0.53	1.73	2.17				
FW070PB	14000	5.77	0.06	0.43	0.58	0.87	3.61	4.51				
FW075PB	11000	11.9	0.12	0.9	1.2	1.8	5.78	7.22				
FSW095PB	9000	25.8	0.27	1.95	2.59	3.89	16.73	20.91				
FSW100PB	7000	55.4	0.58	4.18	5.58	8.36	31.77	39.71				
FSW110PB	5000	105	1.10	7.94	10.59	15.88	44.93	56.16				
FSW150PB	4000	150	1.56	11.23	14.98	22.46	60.28	75.35				
FSW190PB	3600	200	2.09	15.07	20.09	30.14	84.4	105.5				
FSW225PB	3600	280	2.93	21.09	28.13	42.2	84.4	105.5				

Davit Ma	В	ore	Δ	C			Spacer
Part NO.	Min	Max	A	Ľ	U	UU	Length (mm)
FSW100-100MM/140MM	10	35	65	35	57	78	100/140
FSW110-100MM/140MM	15	42	85	43	76	96	100/140
FSW150-100MM/140MM/180MM	15	48	96	45	80	111	100/140/180
FSW190-100MM/140MM/180MM	20	60	115	54	102	130	100/140/180
FSW225-140MM/180MM	20	65	127	64	111	142	140/180

216

and grease

with same hub

MAX DYNAMIC[®] Coupling - Omega[®] equivalent

oil

- or connector on the related line due to it's simple structure 4. Possible for the dissimilar connection and assembling 5. Polyurethane based for having good water resistance,
- 6. Highest flexible elasticity on run

chemical resistance

Characteristics of MAX DYNAMIC® Coupling

1. Facility protection for twirl and twist, impact and abrasion 2. Very simple replacement and maintenance without

3. Very simple replacement without the separation of motor

7. Less noise

Application

- Agitator
 - Blower
- Compressor
- Generators Pump

Elevators

Fans

- Conveyors Cranes and Hoists
- Brewery and Distilling .
- Food Industry
- Lumber Industry
- Pulp and Paper Mill
- Rubber Industry
- Steel Industry
- Textile Mills
- Aggregate Processing Cement

MAX DYNAMIC[®] Standard Coupling

					Dimensions (mm)									
Max	Torque	Max.	Max	Power	А	В	(2	D	E	F			
Coupling	(kgf.m)	Bore	rpm	Rating	Out	Hub	Min.	Max.	Hub	Total L	ength			
No.		(11111)		(Rw/ipiii)	Dia	Length	Shaft Spacing	Shaft Spacing	Dia	In	Out			
D-2	2.20	28	7,500	0.0023	89	24	35	47	47	83	95			
D-3	4.20	34	7,500	0.0043	102	32	9	47	59	83	111			
D-4	6.40	42	7,500	0.0066	116	37	9	47	66	83	121			
D-5	11.00	48	7,500	0.0110	137	45	10	52	80	100	142			
D-10	16.70	55	7,500	0.0170	162	45	11	53	93	101	143			
D-20	26.70	60	6,600	0.0270	184	50	15	63	114	115	163			
D-30	42.10	75	5,800	0.0430	210	56	12	68	138	124	180			
D-40	63.40	85	5,000	0.0660	241	61	12	74	168	134	196			
D-50	88.20	90	4,200	0.0900	279	69	12	86	207	150	224			
D-60	144.00	105	3,800	0.1480	318	80	11	99	222	171	259			
D-70	254.00	120	3,600	0.2620	356	85	18	109	235	189	281			
D-80	455.00	155	2,000	0.4670	406	114	17	149	286	245	377			
D-100	980.00	171	1,900	1.0000	533	140	44	95	359	324	375			
D-120	1,961.00	190	1,800	2.0000	635	152	57	124	448	362	429			

MAX DYNAMIC[®] Standard Coupling with Compression Bushed Hubs

TAPER-LOCK (D3-D80 Drawing only)

Specification Data with QD Hubs

Max					Power			Dimen	sions (I	mm)									
Dynamic	QD	Torque	Max.	Max.	Rating	А	В	(2	D	E F		Weight						
Coupling	Busn No.	(kgf.m)	Bore (mm)	rpm	(kw/	Out	Hub	In	Out	Hub	Total L	ength	(kg)						
No.			(,		rpm)	Dia	Length		Out	Dia	In	Out							
D-4	JA	6.4	30	7,500	0.0066	116	25	31	48	66	82	99	0.95						
D-5	SH	11.0	35	7,500	0.0110	137	32	44	48	80	108	114	1.63						
D-10	SDS	16.7	42	7,500	0.0170	162	33	30	59	93	97	125	2.18						
D-20	SK	26.7	55	6,600	0.0270	184	48	16	67	114	108	162	3.86						
D-30	SF	42.1	60	5,800	0.0430	210	51	37	56	138	138	157	6.35						
D-40	Е	63.4	75	5,000	0.0660	241	67	32	44	168	165	178	10.80						
D-50	Е	88.2	75	4,200	0.0900	279	67	35	73	207	168	207	17.06						
D-60	F	144.0	90	3,800	0.1480	318	92	38	48	222	222	232	20.64						
D-70	J	254.0	100	3,600	0.2620	356	114	33	36	235	262	265	30.89						
D-80	Μ	455.0	140	2,000	0.4670	406	171	19	32	286	362	375	63.50						
D-100	М	980.0	140	1,900	1.0000	533	173	44	29	359	390	375	113.40						
D-120	N	1,961.0	150	1,800	2.0000	635	206	44	29	448	456	441	215.46						

* Note: Dimensions may vary depending on bushing manufacturer. Dimensions subject to change.

	Specification Data with Taper-Lock Hubs												
Max	Taper				Power			Dime	ensions	(mm)			
Dynamic	Lock	Torque	Max. Bore	Max.	Rating	А	В	(С	D	Е	F	Weight
Coupling No.	Bush No.	(kgf.m)	(mm)	rpm	(kw/ rpm)	Out Dia	Hub Length	li	n	Hub Dia	Total L	ength	(kg)
D-3	1008	4.2	25	7,500	0.0043	102	22	43	3.0	59	8	7	0.82
D-4	1008	6.4	25	7,500	0.0066	116	22	43	3.0	66	8	7	1.18
D-5	1108	11.0	28	7,500	0.0110	137	22	56	5.0	80	100		1.81
D-10	1610	16.7	35	7,500	0.0170	162	25	52.0		93	103		2.72
D-20	1610	26.7	42	6,600	0.0270	184	25	63.5		114	114		4.08
D-30	2012	42.1	50	5,800	0.0430	210	32	65	5.0	138	129		6.17
D-40	2517	63.4	65	5,000	0.0660	241	44	60).0	168	149		9.89
D-50	2517	88.2	65	4,200	0.0900	279	44	76	5.0	207	16	55	14.29
D-60	3020	144.0	75	3,800	0.1480	318	51	84	+.O	222	18	36	21.14
D-70	3535	254.0	100	3,600	0.2620	356	89	60).0	235	23	38	30.25
D-80	4040	455.0	100	2,000	0.4670	406	102	95	5.0	286	298		37.19
								In	Out		In	Out	
D-100	4545	980.0	110	1,900	1.0000	533	114	38	152	359	267	381	113.40
D-120	5050	1,961.0	125	1,800	2.0000	635	127	51	181	448	305	435	185.07

Finer Power Transmissions"

MAX DYNAMIC[®] Spacer Coupling

000

"Why compete against your supplier when you can be our partner"

					Dimensions (mm)									
Max	Torque	Max.	Max	Power	А	В	(-	D	E	F			
Coupling	(kgf.m)	Bore	rpm	(kw/	Out	Hub	Min.	Max.	Hub	Total L	ength			
No.		(11111)		rpm)	Dia	Length	Shaft Spacing	Shaft Spacing	Dia	In	Out			
DS-2	2.20	28	7,500	0.0023	89	24	91	100	47	146	149			
DS-3	4.20	34	7,500	0.0043	102	37	85	140	59	184	216			
DS-4	6.40	42	7,500	0.0066	116	37	85	140	66	184	216			
DS-5	11.00	48	7,500	0.0110	137	45	89	140	80	184	228			
DS-10	16.70	55	7,500	0.0170	162	45	89	140	93	184	228			
DS-20	26.70	60	4,800	0.0270	184	50	67	180	114	238	280			
DS-30	42.10	75	4,200	0.0430	210	56	54	180	138	238	293			
DS-40	63.40	85	3,600	0.0660	241	61	41	180	168	238	307			
DS-50	88.20	90	3,100	0.0900	279	69	28 180		207	238	319			
DS-60	144.00	105	2,800	0.1480	318	80	66	250	222	318	415			
DS-70	254.00	120	2,600	0.2620	356	85	59	250	235	318	421			
DS-80	455.00	155	1,800	0.4670	406	114	37	250	286	318	478			

Recommended (Capscrew
Size	Torque (kgf.m)
D-2	
D-3	
D-4	2.3
D-5	
D-10	
D-20	
D-30	4.1
D-40	4.1
D-50	
D-60	
D-70	10.2
D-80	
D-100	7 7
D-120	1.10

NOTE

- 1. A bolt having the highest tension shall be used
- 2. Locktite as adhesive shall be used
- 3. Never use a bolt more than twice

MAX DYNAMIC[®] Coupling

The method of assembly

- 1. Adjust the face of A and A' at same space
- 2. Adjust Hub's Minimum space
- Assemble the bolts in the order of 2-2', 5-5', 3-3', 4-4', 6-6', 1-1'
- 4. Assemble the bolts in the middle part of the edge

- 1. Adjust the face of A and A' at same space
- 2. Adjust Hub's Minimum space
- Assemble the bolts in the order of 2-2', 7-7', 3-3', 6-6', 1-1', 4-4', 8-8', 5-5'
- 4. Assemble the bolts in the middle part of the edge

ansmissions "Why compete against your supplier when you can be our partner"

Finer Power Tr

Service (safety) factors for each running parts

General Application	Service Factor	Industry Application	Service Factor
Agitator	1.5	Aggregate Processing Cement	2.0~3.0
Blower	1.0~1.5	Brewery and Distilling	1.0~2.0
Compressor	1.0~2.0	Food Industry	1.0~2.0
Conveyor	1.25~1.5	Lumber Industry	1.5~2.5
Cranes and Hoist	2.0~2.5	Power Industry	1.0~2.5
Elevators	1.0~2.0	Pulp and Paper Mills	1.0~3.5
Fans	1.0~2.0	Rubber Industry	1.0~3.0
Generators	1.0~2.5	Steel Industry	2.0~4.5
Pumps	1.0~1.5	Textile	1.0~2.0

Service/Safety Factor

	Running Status	Service Factor
1	For being continuous running and light load weight	1.0
2	For being the various change of the rotary power	1.5
3	For being various and frequent variation on the turning force	2.0
4	For being the variation of the rotary power accompaning impact	2.5
5	For being high impact load-weight accompaning slight retro-rotation	3.0
6	For being frequent retro-rotation accompaning high impact	consult

Rigid Coupling

Rigid Couplings are used in situations where shaft alignment is essential. A misaligned coupling can cause damage and downtime. When properly fitted this torsionally rigid coupling helps prevent any such event. Finer Rigid Couplings are Taper Lock ready and available in a range of sizes to accommodate almost any shaft size.

Rigid Couplings consist of 2 flanges, available in internal and external entry (H & F). This gives two possible coupling assemblies HF and FF. When connecting horizontal shafts, choose the most convenient method. When connecting vertical shafts use assembly FF only.

G

Ď

* is the wrench clearance to allow for tightening and loosening the bush on the shaft.

+ is the distance between shaft ends.

Coupling weights calculated including average sized TL Bush.

Spacer Coupling

The Spacer Coupling is used to extend the distance of a shaft. Designed in conjunction with the Tyre Coupling specifications, it can be used in combination with other couplings in the Finer Power Transmission range.

As the Spacer Coupling is Taper Locked, a large range of shaft sizes can be easily accommodated.

Spacer Coupling

Size	Bush	А	В	С	D	Е	F	G	Н	J	К	L	Кg
FSM16-140	1615	127	80	32	33	20	25	131	41	109	10	65	4.0
FSM25-140	2517	178	127	48	38	23	27	131	48	108	14	72	8.9
FSM25-180	2517	178	127	48	38	23	27	171	48	148	14	78	9.1
FSM30-180	3030	216	146	60	49	47	34	171	79	144	18	80	18.70

Spacer Coupling with Tyre Coupling

Size	Tyre Couple	Spacer Distance	Spacer Bush	Tyre Bush	А	В	С	D	Е	F	G	н	J	К	L	Μ	S	т
	T40			1008	104	82			200						126	22	94	
FSM16-	T50	140	1615	1210	133	79	127	80	213	38	18	15	14	9	125	25	134	32
110	T60			1610	165	70			214						118	27	134	
FSM25-	T80	140	7517	2517	211	95	170	177	233	/.E		16	17.	0	116	25	134	/.8
140	T90	140	2017	2517	235	108	1/0	125	233	45		10	14	9	116	27	134	40
FSM25-	T80	100	2517	2517	211	95	5	170 177	273			10	17.	0	158	25	174	1.0
180	T90	100	2017	2517	235	108	1/0	125	273	45		10	14	9	156	27	174	40
FSM30-	T100	100	2020	3020	254	120	216	14.6	310	76	20	20	17	0	156	25	174	60
180	T110	180	3030	3020	279	134	216	146	310	/0	29	20	1/	9	158	27	174	60

Couplings

Couplings Comparison Chart

"Australia's Only Genuine Wholesaler"

Selection Criterion	Rigid	Chain	Gear	Taper Grid	Curved Tooth Gear	HRC	Jaw	Curved Jaw (Rotex)	Cone Ring	Tyre	Max Dynamic (Omega Equivalent)
Torque Range (Nm)	Up to 11300	217- 8786	1138- 135242	47- 25980	18-160	31-3150	3.5-280	10-3600	50- 15140	24-3770	21-19230
Speed Capability	Fair	Good	Excellent	Excellent	Fair	Good	Good	Excellent	Fair	Good	Excellent
Shaft Size Range - mm	11mm- 125mm	14mm- 110mm	13mm- 255mm	12mm- 184mm	8mm- 41mm	25mm- 90mm	14mm- 60mm	6mm- 100mm	12mm- 150mm	10mm- 75mm	35mm- 124mm
Bore Types	Taperlock	Pilotbore	Pilotbore	Pilotbore	Pilotbore	Taperlock & Pilotbore	Pilotbore + Bore & Keyed Range	Taperlock & Pilotbore	Taperlock & Pilotbore	Taperlock	Pilotbore & Taperlock
Misalignment Capability (Maximum Angular - Deg.)	0	1	1.5	0.25	3-5	0.2-1.7	1	0.8-1.2	0.2-1.7	4	4
Temperature Range Standard Element		-10C to +60C	-40C to +100C	-18C to +70C	-25C to +66C	-40C to +100C	-40C to +100C	-4C to +120C	Up to +70C	-50C to +50C	Up to +120C
Ease of Installation	Easy	Easy	Fair	Fair	Easy	Easy	Easy	Easy	Easy	Fair	Fair
Damping Capacity	Poor	Fair	Poor	Fair	Poor	Good	Good	Good	Good	Excellent	Excellent

For technical details on all couplings listed above, please see "Couplings" section page 177.

BARE ESSENTIALS CHECKLIST FOR DRIVE SELECTION:

COUPLING SELECTION
Power (kw or Hp)
Speed (RPM)
Shaft Sizes
Once you have this information you can contact the team at Finer Power Transmission to help you select the appropriate drive.

CONVERSION CONSTANTS

Length
Millimetres x 0.039370 = inches
Metres x 39.370 = inches
Metres x 3.2808 = Feet
Kilometres x 0.6213 = Miles
Inches x 25.4001 = Millimetres
Inches x 0.0254 = Metres
Feet x 0.30480 = Metres
Miles x 1.61 = Killometres
Power
Kilowatt (kw) x 1.340 = horse power (hp)
Horse Power (hp) x 0.746 = kilowatt (kw)
Torque
Newton metre (Nm) x 0.735 = Pounds feeet (lbf ft)
Newton metre (Nm) x 8.85 = Pounds inches (Ibf in)
Kilogram force metre (kgf m) x 9.81 = Newton metre (Nm)
Weight
Kilogram (kg) x 2.20462 = Pound (lb)
Metric Ton (1000kg) x 0.98421 = Ton (2240lb)